Induction of apoptosis using sphingolipids activates a chloride current in Xenopus laevis oocytes.

نویسندگان

  • R Souktani
  • A Berdeaux
  • B Ghaleh
  • J F Giudicelli
  • L Guize
  • J Y Le Heuzey
  • P Henry
چکیده

The purpose of this study was to investigate whether the cell shrinkage that occurs during apoptosis could be explained by a change of the activity in ion transport pathways. We tested whether sphingolipids, which are potent pro-apoptotic compounds, can activate ionic currents in Xenopus laevis oocytes. Apoptosis was characterized in our model by a decrease in cell volume, a loss of cell viability, and DNA cleavage. Oocytes were studied using voltage-clamp after injection with N,N-dimethyl-D-erythrosphingosine (DMS) or D-sphingosine (DS). DMS and DS activated a fast-activating, slowly inactivating, outwardly rectifying current, similar to I(Cl-swell), a swelling-induced chloride current. Lowering the extracellular chloride dramatically reduced the current, and the channel was more selective for thiocyanate and iodide (thiocyanate > iodide) than for chloride. The current was blocked by 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and lanthanum but not by niflumic acid. Oocytes injected with a pseudosubstrate inhibitor of protein kinase C (PKC), PKC-(19-31), exhibited the same current. DMS-activated current was abolished by preexposure with phorbol myristate acetate. Our results suggest that induction of apoptosis in X. laevis oocytes, using sphingolipids or PKC inhibitors, activates a current similar to swelling-induced chloride current previously described in oocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Dynamic properties of calcium-activated chloride currents in Xenopus laevis oocytes

Chloride is the most abundant permeable anion in the cell, and numerous studies in the last two decades highlight the great importance and broad physiological role of chloride currents mediated anion transport. They participate in a multiplicity of key processes, as for instance, the regulation of electrical excitability, apoptosis, cell cycle, epithelial secretion and neuronal excitability. In...

متن کامل

Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels

For the past 30 years, oocytes from Xenopus laevis have been extensively used to express and characterise ion channels in an easily controlled environment. Here we report the first use of oocytes from the closely related species Xenopus borealis as an alternative expression system for neuronal ion channels. Using the two-electrode voltage-clamp technique, we show that a wide variety of voltage-...

متن کامل

Hypotonicity activates a native chloride current in Xenopus oocytes

Xenopus oocytes are frequently utilized for in vivo expression of cellular proteins, especially ion channel proteins. A thorough understanding of the endogenous conductances and their regulation is paramount for proper characterization of expressed channel proteins. Here we detail a novel chloride current (ICl.swell) responsive to hypotonicity in Xenopus oocytes using the two-electrode voltage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 279 1  شماره 

صفحات  -

تاریخ انتشار 2000